Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Phytopathology ; 114(2): 484-495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408034

RESUMO

Maize lethal necrosis (MLN) is a viral disease caused by host co-infection by maize chlorotic mottle virus (MCMV) and a potyvirus, such as sugarcane mosaic virus (SCMV). The disease is most effectively managed by growing MLN-resistant varieties. However, the relative importance of MCMV and potyvirus resistance in managing this synergistic disease is poorly characterized. In this study, we evaluated the effects of SCMV and/or MCMV resistance on disease, virus titers, and synergism and explored expression patterns of known potyvirus resistance genes TrxH and ABP1. MLN disease was significantly lower in both the MCMV-resistant and SCMV-resistant inbred lines compared with the susceptible control Oh28. Prior to 14 days postinoculation (dpi), MCMV titers in resistant lines N211 and KS23-6 were more than 100,000-fold lower than found in the susceptible Oh28. However, despite no visible symptoms, titer differences between MCMV-resistant and -susceptible lines were negligible by 14 dpi. In contrast, systemic SCMV titers in the potyvirus-resistant line, Pa405, ranged from 130,000-fold to 2 million-fold lower than susceptible Oh28 as disease progressed. Initial TrxH expression was up to 49,000-fold lower in Oh28 compared with other genotypes, whereas expression of ABP1 was up to 4.5-fold lower. Measures of virus synergy indicate that whereas MCMV resistance is effective in early infection, strong potyvirus resistance is critical for reducing synergist effects of co-infection on MCMV titer. These results emphasize the importance of both potyvirus resistance and MCMV resistance in an effective breeding program for MLN management.


Assuntos
Coinfecção , Potyvirus , Tombusviridae , Doenças das Plantas , Necrose
2.
Virology ; 593: 110011, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367474

RESUMO

BACKGROUND: Groundnut (Arachis hypogaea L.) is the 13th most important global crop grown throughout the tropical and subtropical regions of the world. One of the major constraints to groundnut production is viruses, which are also the most economically important and most abundant pathogens among cultivated legumes. Only a few studies have reported the characterization of RNA viruses in cultivated groundnuts in western Kenya, most of which deployed classical methods of detecting known viruses. METHODS: We sampled twenty-one symptomatic and three asymptomatic groundnut leaf samples from farmers' fields in western Kenya. Total RNA was extracted from the samples followed by First-strand cDNA synthesis and sequencing on the Illumina HiSeq 2500 platform. After removing host and rRNA sequences, high-quality viral RNA sequences were de novo assembled and viral genomes annotated using the publicly available NCBI virus database. Multiple sequence alignment and phylogenetic analysis were done using MEGA X. RESULTS: Bioinformatics analyses using as low as ∼3.5 million reads yielded complete and partial genomes for Cauliflower mosaic virus (CaMV), Cowpea polerovirus 2 (CPPV2), Groundnut rosette assistor virus (GRAV), Groundnut rosette virus (GRV), Groundnut rosette virus satellite RNA (satRNA) and Peanut mottle virus (PeMoV) falling within the species demarcation criteria. This is the first report of CaMV and the second report of CPPV2 on groundnut hosts in the world. Confirmation of the detected viruses was further verified through phylogenetic analyses alongside reported publicly available highly similar viruses. PeMoV was the only seed-borne virus reported. CONCLUSION: Our findings demonstrate the power of Next Generation Sequencing in the discovery and identification of novel viruses in groundnuts. The detection of the new viruses indicates the complexity of virus diseases in groundnuts and would require more focus in future studies to establish the effect of the viruses as sole or mixed infections on the crop. The detection of PeMoV with potential origin from Malawi indicates the importance of seed certification and cross-boundary seed health testing.


Assuntos
Fabaceae , Luteoviridae , Vírus de Plantas , Vírus de RNA , Tombusviridae , Caulimovirus/genética , Quênia , Filogenia , Vírus de Plantas/genética , Vírus de RNA/genética , Fabaceae/genética , Luteoviridae/genética , Perfilação da Expressão Gênica
3.
Arch Virol ; 169(2): 24, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206482

RESUMO

The complete nucleotide sequence of a newly discovered virus infecting Quercus aliena Blume, tentatively named "quercus leafroll virus" (QLRV), was determined through high-throughput and Sanger sequencing. The sequence comprises 3,940 nucleotides, has five open reading frames, and has a typical pelarspovirus genome organization, with neither 3' polyadenylation nor a 5' cap. The proteins encoded by QLRV share 17.9 to 44.2% amino acid sequence identity with known pelarspovirus proteins. The highest amino acid sequence identity values for the RNA-dependent RNA polymerase (RdRp) and coat protein were 67.5% and 55.2%, respectively, which are below the current thresholds for pelarspovirus species demarcation. On the basis of these results, we propose classifying QLRV as a new member of the genus Pelarspovirus, family Tombusviridae.


Assuntos
Quercus , Tombusviridae , República da Coreia , Sequência de Aminoácidos , Nucleotídeos
4.
Methods Mol Biol ; 2771: 83-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285394

RESUMO

Transgenic expression of hairpin RNA or artificial microRNA is widely used for genetic studies in plant science. However, induction of RNA silencing by transgenic method may have a problem when studying essential genes. Here, we provide an in planta transient double-stranded RNA (dsRNA) producing system using a tobacco necrosis virus A (TNV-A)-based replicon for efficiently inducing RNA silencing in plants. In this system, the target sequence is placed between the cauliflower mosaic virus 35S promoter and the 3'-terminal part of viral genomic RNA, while the C-terminal part of TNV-A RNA-dependent RNA polymerase (p82C) is expressed by a different promoter. The endogenous RNA polymerase-synthesized target sequence is recruited by p82C to produce dsRNA to induce RNA silencing.


Assuntos
MicroRNAs , Tombusviridae , Interferência de RNA , RNA de Cadeia Dupla/genética , Tombusviridae/genética , MicroRNAs/genética , RNA Viral/genética
5.
Arch Virol ; 168(12): 287, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947857

RESUMO

This study focuses on the phylogenetic analysis of previously unclassified tombus-like viruses, which are characterized by the presence of homologs of the suppressor protein p19. The primary objectives of this research were to investigate the evolutionary relationships among these viruses and to explore the impact of suppressor proteins and recombination events on their evolution. A dataset comprising 94 viral sequences was analyzed to achieve these goals. The phylogenetic analysis revealed the presence of two distinct clusters within the tombus-like virus group. One cluster consisted of viruses that encoded p19-like RNA suppressors, while the other cluster comprised viruses encoding p14-like suppressors. Based on these findings, we propose the classification of PGT-pt108 as an isolate of carnation Italian ringspot virus (CIRV), and both Tombusviridae sp. s48-k141_139792 and Tombusviridae sp. s51-k141_185213 as isolates of tomato bushy stunt virus (TBSV). Furthermore, this study suggests the establishment of two new genera within the family Tombusviridae, based on the observed divergence and distinct characteristics of these tombus-like viruses. Through the analysis of recombination events, we provide insights into the interspecies movement of CIRV, which is reflected in its phylogenetic positioning. This research contributes to our understanding of the evolutionary dynamics and classification of tombus-like viruses, shedding light on the role of suppressor proteins and recombination events in their evolution and interspecies transmission.


Assuntos
Tombusviridae , Tombusvirus , Filogenia , Tombusvirus/genética , Tombusviridae/genética , Recombinação Genética , RNA Viral/genética , RNA Viral/metabolismo
6.
Arch Virol ; 168(12): 296, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985520

RESUMO

Neckar River virus (NRV), first isolated from a water sample of the Neckar River (Germany) in the 1980s, was serologically characterized as a novel tombusvirus. In this study, the complete genome sequence was determined, and an infectious full-length cDNA clone was constructed. The genome organization of NRV (DSMZ PV-0270) resembles that of tombusviruses. The genome consists of 4739 nucleotides and contains five open reading frames (ORFs) and one additional putative ORF (pX) in the 3'-terminal region. Phylogenetic analysis and sequence comparisons confirmed NRV to be a member of the species Tombusvirus neckarfluminis in the genus Tombusvirus. The infectious full-length cDNA clone was constructed using Gibson assembly and subsequent infection of Nicotiana benthamiana plants by Rhizobium radiobacter inoculation. The virus derived from the full-length cDNA clone caused symptoms resembling those caused by the wild-type virus, but slightly milder.


Assuntos
Tombusviridae , Tombusvirus , Tombusvirus/genética , Tombusviridae/genética , DNA Complementar , Filogenia , Genoma Viral , Fases de Leitura Aberta , RNA Viral/genética
7.
Nucleic Acids Res ; 51(19): 10700-10718, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37742076

RESUMO

Plus-strand RNA viruses frequently employ -1 programmed ribosomal frameshifting (-1 PRF) to maximize their coding capacity. Ribosomes can frameshift at a slippery sequence if progression is impeded by a frameshift stimulating element (FSE), which is generally a stable, complex, dynamic structure with multiple conformations that contribute to the efficiency of -1 PRF. As FSE are usually analyzed separate from the viral genome, little is known about cis-acting long-distance interactions. Using full-length genomic RNA of umbravirus-like (ula)RNA citrus yellow vein associated virus (CY1) and translation in wheat germ extracts, six tertiary interactions were found associated with the CY1 FSE that span nearly three-quarters of the 2.7 kb genomic RNA. All six tertiary interactions are conserved in other Class 2 ulaRNAs and two are conserved in all ulaRNAs. Two sets of interactions comprise local and distal pseudoknots that involve overlapping FSE nucleotides and thus are structurally incompatible, suggesting that Class 2 FSEs assume multiple conformations. Importantly, two long-distance interactions connect with sequences on opposite sides of the critical FSE central stem, which would unzip the stem and destabilize the FSE. These latter interactions could allow a frameshifting ribosome to translate through a structurally disrupted upstream FSE that no longer blocks ribosome progression.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Tombusviridae , Tombusviridae/genética , RNA Viral/metabolismo , Conformação de Ácido Nucleico , Mutação da Fase de Leitura
8.
Nucleic Acids Res ; 51(16): 8891-8907, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548413

RESUMO

In eukaryotic messenger RNAs, the 5' cap structure binds to the translation initiation factor 4E to facilitate early stages of translation. Although many plant viruses lack the 5' cap structure, some contain cap-independent translation elements (CITEs) in their 3' untranslated region. The PTE (Panicum mosaic virus translation element) class of CITEs contains a G-rich asymmetric bulge and a C-rich helical junction that were proposed to interact via formation of a pseudoknot. SHAPE analysis of PTE homologs reveals a highly reactive guanosine residue within the G-rich region proposed to mediate eukaryotic initiation factor 4E (eIF4E) recognition. Here we have obtained the crystal structure of the PTE from Pea enation mosaic virus 2 (PEMV2) RNA in complex with our structural chaperone, Fab BL3-6. The structure reveals that the G-rich and C-rich regions interact through a complex network of interactions distinct from those expected for a pseudoknot. The motif, which contains a short parallel duplex, provides a structural mechanism for how the guanosine is extruded from the core stack to enable eIF4E recognition. Homologous PTE elements harbor a G-rich bulge and a three-way junction and exhibit covariation at crucial positions, suggesting that the PEMV2 tertiary architecture is conserved among these homologs.


Assuntos
Vírus de Plantas , Sequências Reguladoras de Ácido Ribonucleico , Tombusviridae , Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/metabolismo , Vírus de Plantas/química , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , Tombusviridae/química
9.
Arch Virol ; 168(7): 197, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392254

RESUMO

A novel umbra-like virus was identified in arborvitae in South Korea using RNA sequencing (RNA-seq). The virus identified was tentatively named "arborvitae umbra-like virus" (AULV) and contained a 4,300-nucleotide genome organized into four non-structural open reading frames (ORFs). Cloning and Sanger sequencing were used to confirm the viral contig sequence and determine the size of the genome. Genome analysis indicated that ORF2 encodes an RNA-dependent RNA polymerase that is probably expressed through ribosomal frameshifting. ORF3 encodes a putative long-distance movement protein, while the functions of ORFs 1 and 4 are unknown. The virus lacks a coat protein gene. The genome of AULV shares 27.3%-48.4% nucleotide sequence identity with closely related umbraviruses. Phylogenetic analysis based on the complete genome sequences and amino acid sequences of the RNA-dependent RNA polymerase revealed that AULV forms a monophyletic lineage with Guiyang paspalum paspaloides tombus-like virus (GPpTV1). We suggest that AULV is a novel umbra-like virus belonging to the family Tombusviridae.


Assuntos
Thuja , Tombusviridae , Umbridae , Animais , Filogenia , China , República da Coreia , RNA Polimerase Dependente de RNA/genética
10.
Nucleic Acids Res ; 51(16): 8787-8804, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37395397

RESUMO

Many eukaryotic RNA viruses transcribe subgenomic (sg) mRNAs during infections to control expression of a subset of viral genes. Such transcriptional events are commonly regulated by local or long-range intragenomic interactions that form higher-order RNA structures within these viral genomes. In contrast, here we report that an umbravirus activates sg mRNA transcription via base pair-mediated dimerization of its plus-strand RNA genome. Compelling in vivo and in vitro evidence demonstrate that this viral genome dimerizes via a kissing-loop interaction involving an RNA stem-loop structure located just upstream from its transcriptional initiation site. Both specific and non-specific features of the palindromic kissing-loop complex were found to contribute to transcriptional activation. Structural and mechanistic aspects of the process in umbraviruses are discussed and compared with genome dimerization events in other RNA viruses. Notably, probable dimer-promoting RNA stem-loop structures were also identified in a diverse group of umbra-like viruses, suggesting broader utilization of this unconventional transcriptional strategy.


Assuntos
Regulação Viral da Expressão Gênica , Tombusviridae , Sequência de Bases , Dimerização , Genoma Viral , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Subgenômico , Tombusviridae/genética , Tombusviridae/metabolismo
11.
Virus Res ; 333: 199143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271421

RESUMO

Screening of blueberry accessions using high throughput sequencing revealed the presence of a new virus. Genomic structure and sequence are similar to that of nectarine stem pitting associated virus (NSPaV), a member of the genus Luteovirus, family Tombusviridae. The full genome of the new luteovirus, tentatively named blueberry virus L (BlVL), was characterized and analyzed. Similar to NSPaV, BlVL does not contain readily identifiable movement proteins in any of the seven isolates sequenced. More than 600 samples collected from five states were screened and 79% were found infected, making BlVL the most widespread blueberry virus in the United States.


Assuntos
Mirtilos Azuis (Planta) , Luteovirus , Tombusviridae , Vírus , Estados Unidos , Genômica
12.
Arch Virol ; 168(5): 155, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145192

RESUMO

Two new RNA viruses were identified in Ageratum conyzoides in China using high-throughput sequencing, and their genome sequences were determined using PCR and rapid amplification of cDNA ends. The new viruses, which have positive-sense, single-stranded RNA genomes, were provisionally named "ageratum virus 1" (AgV1) and "ageratum virus 2" (AgV2). AgV1 has a genome of 3,526 nucleotides with three open reading frames (ORFs) and shares 49.9% nucleotide sequence identity with the complete genome of Ethiopian tobacco bushy top virus (genus Umbravirus, family Tombusviridae). The genome of AgV2 consists of 5,523 nucleotides and contains five ORFs that are commonly observed in members of the genus Enamovirus of the family Solemoviridae. Proteins encoded by AgV2 exhibited the highest amino acid sequence similarity (31.7-75.0% identity) to the corresponding proteins of pepper enamovirus R1 (an unclassified enamovirus) and citrus vein enation virus (genus Enamovirus). Based on their genome organization, sequence, and phylogenetic relationships, AgV1 is proposed to be a new umbra-like virus of the family Tombusviridae, and AgV2 is proposed to be a new member of the genus Enamovirus of the family Solemoviridae.


Assuntos
Ageratum , Luteoviridae , Tombusviridae , Genoma Viral , Filogenia , Tombusviridae/genética , Luteoviridae/genética , Genômica , Nucleotídeos , China , Fases de Leitura Aberta , Doenças das Plantas , RNA Viral/genética
13.
Viruses ; 15(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36992347

RESUMO

The cap-independent translation of plus-strand RNA plant viruses frequently depends on 3' structures to attract translation initiation factors that bind ribosomal subunits or bind directly to ribosomes. Umbraviruses are excellent models for studying 3' cap-independent translation enhancers (3'CITEs), as umbraviruses can have different 3'CITEs in the central region of their lengthy 3'UTRs, and most also have a particular 3'CITE (the T-shaped structure or 3'TSS) near their 3' ends. We discovered a novel hairpin just upstream of the centrally located (known or putative) 3'CITEs in all 14 umbraviruses. These CITE-associated structures (CASs) have conserved sequences in their apical loops and at the stem base and adjacent positions. In 11 umbraviruses, CASs are preceded by two small hairpins joined by a putative kissing loop interaction (KL). Converting the conserved 6-nt apical loop to a GNRA tetraloop in opium poppy mosaic virus (OPMV) and pea enation mosaic virus 2 (PEMV2) enhanced translation of genomic (g)RNA, but not subgenomic (sg)RNA reporter constructs, and significantly repressed virus accumulation in Nicotiana benthamiana. Other alterations throughout OPMV CAS also repressed virus accumulation and only enhanced sgRNA reporter translation, while mutations in the lower stem repressed gRNA reporter translation. Similar mutations in the PEMV2 CAS also repressed accumulation but did not significantly affect gRNA or sgRNA reporter translation, with the exception of deletion of the entire hairpin, which only reduced translation of the gRNA reporter. OPMV CAS mutations had little effect on the downstream BTE 3'CITE or upstream KL element, while PEMV2 CAS mutations significantly altered KL structures. These results introduce an additional element associated with different 3'CITEs that differentially affect the structure and translation of different umbraviruses.


Assuntos
Tombusviridae , Regiões 3' não Traduzidas , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tombusviridae/genética , Tombusviridae/metabolismo , RNA Subgenômico/genética
14.
Viruses ; 15(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36992432

RESUMO

Red clover necrotic mosaic virus (RCNMV) is a segmented positive-strand RNA virus consisting of RNA1 and RNA2. Previous studies demonstrated that efficient translation of RCNMV RNA2 requires de novo synthesis of RNA2 during infections, suggesting that RNA2 replication is required for its translation. We explored a potential mechanism underlying the regulation of replication-associated translation of RNA2 by examining RNA elements in its 5' untranslated region (5'UTR). Structural analysis of the 5'UTR suggested that it can form two mutually exclusive configurations: a more thermodynamically stable conformation, termed the 5'-basal stem structure (5'BS), in which 5'-terminal sequences are base paired, and an alternative conformation, where the 5'-end segment is single stranded. Functional mutational analysis of the 5'UTR structure indicated that (i) 43S ribosomal subunits enter at the very 5'-end of RNA2; (ii) the alternative conformation, containing unpaired 5'-terminal nucleotides, mediates efficient translation; (iii) the 5'BS conformation, with a paired 5'-end segment, supresses translation; and (iv) the 5'BS conformation confers stability to RNA2 from 5'-to-3' exoribonuclease Xrn1. Based on our results, we suggest that during infections, newly synthesized RNA2s transiently adopt the alternative conformation to allow for efficient translation, then refold into the 5'BS conformation, which supresses translation and promotes efficient RNA2 replication. The potential advantages of this proposed 5'UTR-based regulatory mechanism for coordinating RNA2 translation and replication are discussed.


Assuntos
Tombusviridae , Regiões 5' não Traduzidas , Tombusviridae/genética , Conformação de Ácido Nucleico , RNA Viral/genética , RNA Viral/química , Regiões 3' não Traduzidas
15.
PLoS One ; 18(2): e0281484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745639

RESUMO

Maize lethal necrosis is a destructive virus disease of maize caused by maize chlorotic mottle virus (MCMV) in combination with a virus in the family Potyviridae. Emergence of MLN is typically associated with the introduction of MCMV or its vectors and understanding its spread through seed is critical for disease management. Previous studies suggest that although MCMV is detected on seed, the seed transmission rate of this virus is low. However, mechanisms influencing its transmission are poorly understood. Elucidating these mechanisms is crucial for informing strategies to prevent spread on contaminated seed. In this study, we evaluated the rate of MCMV seed transmission using seed collected from plants that were artificially inoculated with MCMV isolates from Hawaii and Kenya. Grow-out tests indicated that MCMV transmission through seed was rare, with a rate of 0.004% among the more than 85,000 seed evaluated, despite detection of MCMV at high levels in the seed lots. To understand factors that limit transmission from seed, MCMV distribution in seed tissues was examined using serology and immunolocalization. The virus was present at high levels in maternal tissues, the pericarp and pedicel, but absent from filial endosperm and embryo seed tissues. The ability to transmit MCMV from seed to uninfected plants was tested to evaluate virus viability. Transmission was negatively associated with both seed maturity and moisture content. Transmission of MCMV from infested seed dried to less than 15% moisture was not detected, suggesting proper handling could be important for minimizing spread of MCMV through seed.


Assuntos
Doenças das Plantas , Potyviridae , Tombusviridae , Zea mays , Quênia , Doenças das Plantas/virologia , Zea mays/virologia , Havaí , Sementes/virologia
16.
Arch Virol ; 168(3): 90, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786910

RESUMO

A new member of the genus Alphacarmovirus was detected in Stellaria aquatica using high-throughput RNA sequencing analysis. The complete genome sequence of this new virus isolate, tentatively named "Stellaria aquatica virus A" (StAV-A), comprises 4,017 nucleotides with five predicted open reading frames (ORFs) and has a typical alphacarmovirus genome organization. Pairwise comparison of StAV-A with selected members of family Tombusviridae showed 44-58%, 32-64%, and 19-49% sequence identity for the overall nucleotide sequence, polymerase, and coat protein, respectively. Phylogenetic analysis of polymerase sequences places StAV-A alongside other members of the genus Alphacarmovirus in the family Tombusviridae.


Assuntos
Stellaria , Tombusviridae , Genoma Viral , Stellaria/genética , Filogenia , RNA Viral/genética , Fases de Leitura Aberta , Doenças das Plantas
17.
Arch Virol ; 168(2): 65, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653663

RESUMO

In this study, we describe the identification of a new gammacarmovirus infecting Cucurbita pepo plants showing a range of mosaic, stunting, yellowing, and wilting symptoms. The virus had a narrow host range and mostly produced chlorotic and necrotic local lesions in the majority of the tested plants. However, Nicotiana benthamiana showed systemic symptoms under laboratory conditions. Using a combination of Sanger sequencing and rapid amplification of cDNA ends (RACE), the complete genome sequence of the virus was determined to be 4274 nucleotides (nt) in length. Its genome organization is similar to that of members of the genus Gammacarmovirus in the family Tombusviridae, consisting of five overlapping open reading frames (ORFs) encoding p28, replicase, p7A, p7B, and coat protein (CP), respectively. The genome is flanked by short 5' and 3' non-coding regions (NCR) at either end. In pairwise comparisons of replicase and CP sequences, the virus showed the highest amino acid sequence identity of 71.55% and 54.86%, respectively, to melon necrotic spot virus (MNSV), the type member of the genus Gammacarmovirus. Since the sequence identity values are below the species demarcation threshold suggested by the International Committee on Taxonomy of Viruses (ICTV), the virus from Cucurbita pepo plants, for which the name "cucurbit carmovirus" (CuCV) is proposed, represents a new species. In phylogenetic analysis based on the replicase and CP amino acid sequences, CuCV clustered with MNSV but formed a distinct branch, further confirming that the virus is a distinct member of the genus Gammacarmovirus.


Assuntos
Carmovirus , Tombusviridae , Genoma Viral , Filogenia , Tombusviridae/genética , Sequência de Aminoácidos , Carmovirus/genética
18.
Viruses ; 14(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36560619

RESUMO

The 3' untranslated regions (UTRs) of positive-strand RNA plant viruses commonly contain elements that promote viral replication and translation. The ~700 nt 3'UTR of umbravirus pea enation mosaic virus 2 (PEMV2) contains three 3' cap-independent translation enhancers (3'CITEs), including one (PTE) found in members of several genera in the family Tombusviridae and another (the 3'TSS) found in numerous umbraviruses and several carmoviruses. In addition, three 3' terminal replication elements are found in nearly every umbravirus and carmovirus. For this report, we have identified a set of three hairpins and a putative pseudoknot, collectively termed "Trio", that are exclusively found in a subset of umbraviruses and are located just upstream of the 3'TSS. Modification of these elements had no impact on viral translation in wheat germ extracts or in translation of luciferase reporter constructs in vivo. In contrast, Trio hairpins were critical for viral RNA accumulation in Arabidopsis thaliana protoplasts and for replication of a non-autonomously replicating replicon using a trans-replication system in Nicotiana benthamiana leaves. Trio and other 3' terminal elements involved in viral replication are highly conserved in umbraviruses possessing different classes of upstream 3'CITEs, suggesting conservation of replication mechanisms among umbraviruses despite variation in mechanisms for translation enhancement.


Assuntos
Carmovirus , Tombusviridae , Tombusviridae/genética , Tombusviridae/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral , Regiões 3' não Traduzidas , Biossíntese de Proteínas
19.
BMC Genomics ; 23(1): 767, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418948

RESUMO

BACKGROUND: Maize-infecting viruses are known to inflict significant agronomic yield loss throughout the world annually. Identification of known or novel causal agents of disease prior to outbreak is imperative to preserve food security via future crop protection efforts. Toward this goal, a large-scale metagenomic approach utilizing high throughput sequencing (HTS) was employed to identify novel viruses with the potential to contribute to yield loss of graminaceous species, particularly maize, in North America. RESULTS: Here we present four novel viruses discovered by HTS and individually validated by Sanger sequencing. Three of these viruses are RNA viruses belonging to either the Betaflexiviridae or Tombusviridae families. Additionally, a novel DNA virus belonging to the Geminiviridae family was discovered, the first Mastrevirus identified in North American maize. CONCLUSIONS: Metagenomic studies of crop and crop-related species such as this may be useful for the identification and surveillance of known and novel viral pathogens of crops. Monitoring related species may prove useful in identifying viruses capable of infecting crops due to overlapping insect vectors and viral host-range to protect food security.


Assuntos
Geminiviridae , Tombusviridae , Humanos , Zea mays , Metagenômica , Metagenoma , Produtos Agrícolas , Geminiviridae/genética , América do Norte
20.
Viruses ; 14(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016443

RESUMO

Umbraviruses are a special class of plant viruses that do not encode any viral structural proteins. Here, a novel umbravirus that has been tentatively named Paederia scandens chlorosis yellow virus (PSCYV) was discovered through RNA-seq in Paederia scandens plants showing leaf chlorosis and yellowing symptoms. The PSCYV genome is a 4301 nt positive-sense, single strand RNA that contains four open reading frames (ORFs), i.e., ORF1-4, that encode P1-P4 proteins, respectively. Together, ORF1 and ORF2 are predicted to encode an additional protein, RdRp, through a -1 frameshift mechanism. The P3 protein encoded by ORF3 was predicted to be the viral long-distance movement protein. P4 was determined to function as the viral cell-to-cell movement protein (MP) and transcriptional gene silencing (TGS) suppressor. Both P1 and RdRp function as weak post-transcriptional gene silencing (PTGS) suppressors of PSCYV. The PVX-expression system indicated that all viral proteins may be symptom determinants of PSCYV. Phylogenetic analysis indicated that PSCYV is evolutionarily related to members of the genus Umbravirus in the family Tombusviridae. Furthermore, a cDNA infectious clone of PSCYV was successfully constructed and used to prove that PSCYV can infect both Paederia scandens and Nicotiana benthamiana plants through mechanical inoculation, causing leaf chlorosis and yellowing symptoms. These findings have broadened our understanding of umbraviruses and their host range.


Assuntos
Anemia Hipocrômica , Tombusviridae , Anemia Hipocrômica/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Folhas de Planta , RNA Viral/genética , RNA Polimerase Dependente de RNA , Tombusviridae/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...